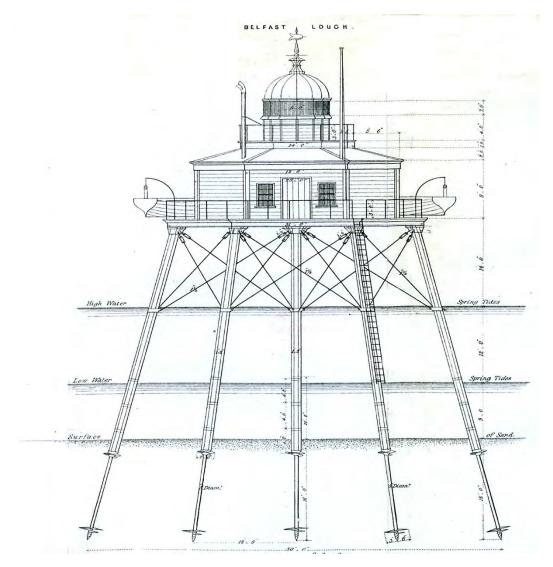
Screw Piles

MBOA 19 October 2016 Ron Fay, P.Eng

Overview

- What are screw piles?
- How do screw piles work?
- How are screw piles used?
- Building inspector considerations
- Discussion


What are screw piles?

Definition

 A screw pile (also helical pile or helical screw pile) is a foundation component consisting of a helical bearing plate attached to a shaft. The pile is installed by slowly turning the shaft with a high-torque, low-speed drive head.

History of Screw Piles

- Screw Piles have been used since the early 1800s. First use of screw piles were as foundations for lighthouses in southern England. First patented by Alexander Mitchell in 1833.
- Over 100 lighthouses on the eastern seaboard of the United States were founded on screw piles from the 1850s to 1890s.

Plan from the late 1840s of Mitchell's lighthouse in Belfast Lough

Current Use of Screw Piles

 Currently, screw piles are used for a wide range of applications, ranging from DIY installations ("Groundhogs") for sunrooms and decks to large screw piles with capacities in excess of 100 tons for large commercial installations.

Scope of this Presentation

- Screw pile installations for large commercial projects (Part 3) are designed, monitored, and approved by design engineers.
- Scope of this presentation will focus on smaller (Part 9) projects – most typically residential and limited small commercial.

Components of a Screw Pile

- Tube
- Helical Bearing Plate
- Top attachment

Screw Pile Tube

- Typically heavy-wall pipe Ø3"+
- Bottom end is cut at an angle (~45°)
- Top end has hole or other provision for mating to:
 - Driving head, and/or
 - Extensions

Helical Bearing Plate

- "Flighting"
- Usually plate heavier than ¼"
- Shaped in a helix (screw) to allow insertion in soil
- Some piles may have more than one bearing plate, spaced along the pile (4'+ spacing common)

How do screw piles work?

- Screw Piles are installed using a high-torque, low-speed driver head (hydraulic gearmotor).
- There is a correlation between drive torque and bearing capacity in certain types of soils.

How do screw piles work?

- If required bearing capacity is not achieved, extensions can be added to the pile to achieve greater depth until capacity is achieved.
- Other options for additional capacity are selecting a larger diameter bearing plate, or selecting a pile with additional bearing plates.

Governing Regulations

- MBC(2010):
 - 4.2.3 Materials Used in Foundations
 - 4.2.3.7 Steel

1) Steel used in foundations or in support of soil or rock shall conform with the appropriate requirements of Subsections 4.3.3. or 4.3.4., unless otherwise specified in this Section

- 4.2.3.8 Steel Piles
 - 1) Where steel piles are used in deep foundations and act as permanent load-carrying members, the steel shall conform with one of the following standards:
 - a) ASTM A 252, "Welded and Seamless Steel Pipe Piles,"
 - b) ASTM A 283/A 283M, "Low and Intermediate Tensile Strength Carbon Steel Plates,"
 - c) ASTM A 1008/A 1008M, "Steel, Sheet, Cold-Rolled, Carbon, Structural, High-Strength Low-Alloy and High-Strength Low-Alloy with Improved Formability, Solution Hardened, and Bake Hardenable,"
 - d) ASTM A 1011/A 1011M, "Steel, Sheet and Strip, Hot-Rolled, Carbon, Structural, High-Strength Low-Alloy, High-Strength Low-Alloy with Improved Formability, and Ultra-High Strength," or
 - e) CAN/CSA-G40.21, "General Requirements for Rolled or Welded Structural Quality Steel."

Governing Regulations (cont'd)

• 4.2.3.10. Corrosion of Steel

1) Where conditions are corrosive to steel, adequate protection of exposed steel shall be provided.

• 4.3.4.1. Design Basis for Structural Steel

1) Buildings and their structural members made of structural steel shall conform to CSA S16, "Design of Steel Structures."

Governing Regulations (cont'd)

- Other Regulations
 - ASTM D 1143-81 (1994), "Standard Test Method for Piles Under Static Axial Compressive Load"
 - ASTM D 3689-90 (1995), "Standard Test Method for Individual Piles Under Static Axial Tensile Load"
 - ASTM D 3966-90, "Standard Test Method for Piles Under Lateral Loads"

Corrosion

- Propensity to corrosion is related to soil chemistry
- Coatings:
 - Zinc
 - Powder coating
 - Powder coating over zinc

Design for Corrosion

- Sacrificial thickness is the amount of thickness lost to corrosion over the design life.
- Corrosion can be accounted for in design by reducing the thickness of helical pile shafts, helical bearing plates, and other components by the sacrificial thickness over the design life in structural calculations.
- Four methods are commonly used to compute sacrificial thickness:
 - International Code Council (ICC) Evaluation Services Document AC358
 - American Association of State Highway and Transportation Officials (AASHTO) (2004) Section 11.10.6.4.2a
 - 98th Percentile life expectancy
 - King method

Table 11.2 Life Expectancy of 0.25-inch- [6-mm-] Thick-wall Tubular Helical Piles (Perko, 2004)

Soil Resistivity (Ohm-cm)	Corrosivity Category		(Minimum) 98% Probability <i>(Average)</i> Helix Foundation Life Expectancy		
		Example Soils	Bare Metal	Galvanized	
0–2,000	Severe	Soil in marine environments; organic soils and peat; soft, wet silts and clays; wet shales	(15) 30 (80)	(40) 75 (200)	
2,000–10,000	High	Stiff, moist clays; medium-dense silts and loams; wet clayey to silty sand; wet sandstone	(55) 70 (135)	(140) 170 (340)	
10,000–30,000	Moderate	Dry to slightly moist clays; dry silts and loams; sand and gravel; limestone	(50) 55 (140)	(125) 140 (350)	
>30,000	Low	Dry shales; dry sandstone; clean and dry sand and gravel; slate and granite	(345) 325 (555)	(865) 810 (1385)	

Design Uses

- Use of screw piles is similar to other pile or pier elements like friction piles or pad & pier.
- Screw piles are not recommended for:
 - Very rocky soil with few fines (ie. pit-run gravel)
 - Excessive shale
 - Extremely dense or stiff soils.

Lateral Resistance

- A single screw pile, installed vertically, has poor ability to resist horizontal loads.
- If horizontal loading is a concern, options include:
 - Installing screw piles at a slight angle from vertical, alternating the direction of the angle.
 - Installing screw piles in multiples, tying the tops of the piles together in a screw cap or equivalent.

Usage Considerations

- Cost
- Suitability of structure to point supports
 - Point loads vs. continuous loading
 - Presence of very large point loads
 - Lateral support

Building Inspector Considerations

- Screw piles appear deceptively simple.
- Often appear to be a "magic solution".

Some Screw Pile Design Factors

- Suitability of the site
- Soil conditions
- Requirements of the structure
- Design of the helical screw pile
- Construction of the pile
- Installation to design requirement?
- Other factors...

Many factors are Part 4 issues.

Some Typical Plan Review and Inspection Concerns:

- Manufacturing process
- Substitution for other foundation types
- Method and success of installation
- Need for professional design

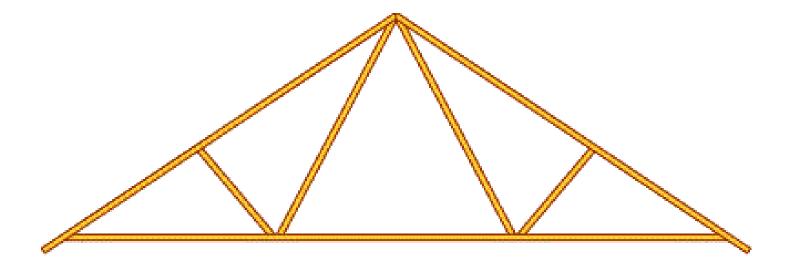
Manufacturing Process

- Material certification
- Welding certification
- Provisions for corrosion prevention

Substitutions for Other Foundation Types

- Proper spacing and sizing of screw piles.
- How are point loads supported?
- What are the lateral loads? How does the proposed installation resist these loads?
- Is the basement floor also supported on screw piles? Garage floor? Steps and decks?

Method and Success of Installation


- What is the speed of the install? If the installation occurs above a threshold RPM (usually only 1 – 3 RPM), screw pile capacity will not be achieved (ie. instead of installing a screw pile, the installer drove in a hole auger)
- Were the required loadings obtained? If so, how were the loadings confirmed? Did the installer monitor the install motor torque (oil pressure on a hydraulic gearmotor)?

Need for Professional Design

- To ensure a proper screw pile installation, a Part 4 analysis should be performed
 - Load identification and quantification
 - Determination of possible risk factors
 - Design features to account for risk factors
 - Lateral loads
 - Changing loads
 - Multi-pile sets to reduce need for large piles.

Example

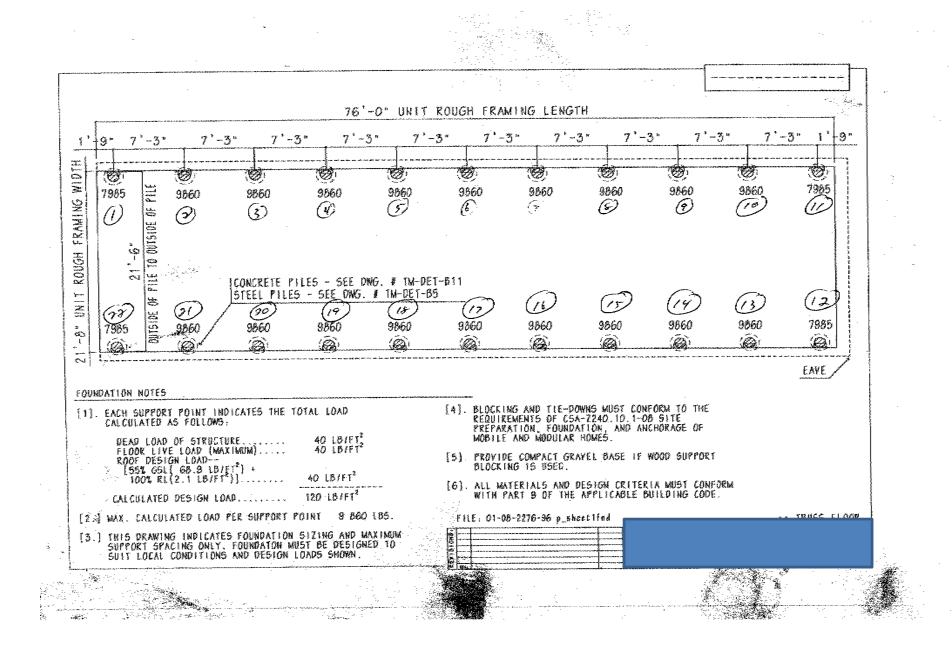
Consider the engineered roof truss:

Engineered Roof Truss

- Comes in all sizes and shapes, for use in all sorts of applications
- Is constructed of commonly-available dimensional lumber
- Easy to replicate?

Comparison of Truss and Screw Pile

- Both appear to be a simple assembly
- Both encourage copying
- Both are similar to an iceberg much of the value/danger is unseen


CCMC-tested Screw Piles

- Some of the risk can be reduced by using CCMC-tested screw piles.
- If a certified installer, working from a engineer-certified load sheet, is able to achieve the torques/loads required by the design, they should be able to produce a installation report documenting their install.

Allowable loads

			Allowab	le Loads	
AUGER DRIVER		Compression		Tension	ension
lydraulic pressure (psi)	Applied Torque (lbf)	kN	LB	kN	LB
750	788	15.8	3 555	1	
800	850	17.1	3 852	1	-
850	913	18.4	4 149	-	
900	975	19.8	4 445	1.6	360
950	1038	21.1	4 742	2.8	630
1000	1100	22.4	5 038	4.0	900
1050	1163	23.7	5 335	5.3	1 184
1100	1225	25.0	5 631	6.5	1 467
1150	1288	26.3	5 928	7.8	1 751
1200	1350	27.7	6 225	9.0	2 034
1250	1413	29.0	6 521	10.3	2 318
1300	1475	30.3	6 818	11.6	2 601
1350	1538	31.6	7 114	12.5	2 824
1400	1600	32.9	7 411	13.5	3 046
1450	1663	34.3	7 708	14.5	3 269
1500	1725	35.6	8 004	15.5	3 491
1550	1788	36.9	8 301	16.5	3 714
1600	1850	38.2	8 597	17.8	3 997
1650	1913	39.5	8 894	19.0	4 281
1700	1975	40.8	9 191	20.3	4 201
1750	2038	40.8	9 487	20.5	
1800	2100	42.2		22.8	4 848
1850	2163	43.5	9 784		5 131
1900	2225	44.0	10 080	24.1 25.3	5 415
1950	2225	40.1	10 377	25.5	5 698
2000	2350	47.4	10 674		5 982
			10 970	27.8	6 265
2050	2413	50.1	11 267	29.1	6 5 4 9
2100	2475	51.4	11 563	30.4	6 832
2150	2538	52.7	11 860	31.4	7 055
2200	2600	54.0	12 156	32.3	7 277
2250	2663	55.3	12 453	33.3	7 500
2300	2725	56.7	12 750	34.3	7 722
2350	2788	58.0	13 046	35.3	7 945
2400	2850	59.3	13 343	36.3	8 168
2450	2913	60.6	13 639	37.3	8 390
2500	2975	61.9	13 936	38.3	8 613
2550	3038	63.3	14 233	39.3	8 835
2600	3100	64.6	14 529	40.3	9 058
2650	3163	65.9	14 826	41.2	9 280
2700	3225	67.2	15 122	42.2	9 503
2750	3288	68.5	15 419	43.2	9 725
2800	3350	69.8	15 716	44.2	9 948
2850	3413	71.2	16 012	45.2	10 170
2900	3475	72.5	16 309	46.2	10 393
2950	3538	73.8	16 605	47.2	10 616
3000	3600	75.1	16 902	48.2	10 838

- CONFIDENTIAL -

PIL	ELC	DAD R	REPC	DRT	Date:		
PILE	SIZE OF	ACTUAL FEET	MINIMUM	MINIMUM	ACTUAL	ACTUAL	ADDRESS:
#	PILE	BELOW GRADE	P.S.I.	LOAD	P.S.I.	LOAD	EXTENSIONS USED
1	35"	13台	1500	7985	2000	10 470	1/5-
2	35"	133	1850	9860	2100	11563	1 5-
3	350	8'	1850	9860	2500	13936	·
4	3 5 "	171	1850	9860	2090	10970	
5	35"	10'	1850	9860		10377	· · · · · · · · · · · · · · · · · · ·
6	35"	8-	1850	9860	2209	12-152	<u> </u>
7	3 5	85	1850	9560	2600	10470	, <u> </u>
8	35"	8-	1850	9860	2000	10970	·
9	3-5"	Ref.	1850	9860	2000	109.70	1-5
10	35"	145	1850	9860	1700	10327	· · · · · · · · · · · · · · · · · · ·
11	35"_	85	1500	7985	1700	9.19/	2/5'
12	354	8-	1500	7985	1600	8597	
13	34"	8	1850	8860	2500	13936	
14	35 "	14-	1850	9860	· · · · · · · ·	10377	1 / 5"
15	35"	16	1850	9860	1859	10 080	1/7-
16	3-54	81	1850	9860	22.00	12156	
17	3 5 "	8'	1850	2860	2400	13343	· · · · · · · · · · · · · · · · · · ·
18	35 "	8-	1850	9860	2500	13936	
19	3-5 4	8/2	1850		1900	10377	,
20	35つ	9	18-50	9860	2200	12156	:

Summary

- Screw piles are one component available to a designer
- As with all other structural components, screw piles add value for some situation, and are not appropriate for others
- The more professional design is included in the installation, the lower the risk to the AHJ.

Discussion

• Questions?